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In most domains, there are two types of variables — observed and unobserved 

(latent). While modeling with only the first type is straightforward, learning a 

model that involves both is much more difficult. Modeling with only observed 

variables in the presence of latent variables will likely lead to a wrong model 

that does not describe the true realm and may also be misleading. Hence, the 

identification of latent variables and the relationships between them and 

between those that are observed is crucial.  

Latent variable models (LVMs) aim to demonstrate latent variables in the 

problem that are manifested by some indicators (observed variables). The 

learning pairwise clusters comparison (LPCC) algorithm [1,2] learns an LVM 

without prior knowledge about the number of latent variables in the model and 

their expected relations. However, since it is initialized using cluster analysis, 

its performance depends on the selected number of clusters. Thus, selecting 

the correct number of clusters is essential for the success of the algorithm. 

In this work, we examined methods to find the optimal number of clusters and 
used two synthetic networks (Figure 1) for the methods’ empirical evaluation. 
The goal was to find correspondence between a structural correctness measure 
(known as the structural Hamming distance, SHD), which evaluates the LPCC-
derived structure (but depends on the true graph that is known only for synthetic 
problems), and a clustering evaluation method that does not depend on 
knowing the true graph. By evaluating this correspondence, we aimed at 
establishing a recommendation procedure to select among different clustering 
schemes the optimal one. We tested two types of methods and their 
accompanying performance measures: clustering performance measures 
represented by the Davies-Bouldin index [3] and Silhouette measures [4], and 
data-fitness performance measures represented by the log-likelihood function 
[5] and Kullback-Leibler (KL) divergence [6]. 
 
We performed two experiments. In the first experiment, we examined the 

correspondence between the four evaluated measures and the SHD with 

respect to the recommended number of clusters for a randomly initialized LPCC 

over a single dataset generated from each of the two networks of Figure 1. 

Figure 2 shows that the KL divergence for a thousand runs recommends for ten 

clusters in G1, which is equal to the lowest SHD value that we get, and fifteen 

clusters in G2, which is in the range of the lowest SHD. Moreover, we can see 

that as we increase the number of runs, the correspondence between the KL 

divergence and SHD score improves. Also, we can say that there is no 

correspondence between the other measures and the SHD, where they 

recommend for numbers of clusters that do not bring the best performance for 

the LPCC. 
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In the second experiment, we re-sampled 100 datasets from each of the two 

LVM structures of Figure 1, and repeated the evaluation of the LPCC 

performance over 100 algorithm initializations for a different number of clusters 

using the structural correctness SHD (ultimate) measure and the four evaluated 

measures. Figure 3 shows that the only measure that gave us a 

correspondence with the SHD is the KL. For G1, the correspondence is not 

perfect; while the best number of clusters we get from the SHD score is seven, 

the KL divergence recommends for six cluster. Although the correspondence is 

not perfect, we still in the range of the minimum value for the SHD score, and it 

is still a good result. In G2, we can see more convincing results, where we see 

a nearly perfect match between the KL and the SHD scores; the behavior of the 

two lines is almost identical, and the lowest number of clusters that 

recommended by the SHD is also the lowest number of clusters recommended 

by the KL. 

 
Our empirical results show that for the two sampled networks, the best 

evaluation method of the clustering schemes is that based on the KL 

divergence. The KL divergence – measuring the probabilistic difference 

between the distribution derived from the learned graph and the sample 

distribution – showed in our experiments a strong correspondence with the LVM 

structural correctness measure, and therefore is recommended, in real-world 

problems in which the true graph is unknown, for the initialization of the LPCC 

algorithm. 
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Figure 2: Experiment 1 results for G1 and G2 

Figure 3: Experiment 2 results for G1 and G2 

Figure 1: LVMs that are used in our experiment. Each is based on a pure 
measurement model and a structural model of different complexity, posing a 

different challenge to a learning algorithm. 
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